Математические задачи в пакете MathCAD 12


             

SVD(сингулярное) разложение



8.3.5. SVD-(сингулярное) разложение



Наиболее эффективными (но и ресурсоемкими) средствами решения произвольных СЛАУ (с матрицей А размера NxM) по методу наименьших квадратов являются так называемые полные ортогональные разложения, имеющие, по определению, вид A=UKVT.

Здесь U и V — ортогональные матрицы размером NxN и MхM соответственно, а k— матрица размера NxM, имеющая следующую структуру:


причем w — матрица размера kxk, где k — ранг исходной матрицы А.

Самое известное из ортогональных, SVD- (singular value decomposition) или сингулярное разложение — разложение вида A=USVT, где S — диагональная матрица, состоящая из нулей и расположенных на диагонали сингулярных чисел матрицы А. Расчет сингулярного разложения в Mathcad осуществляется при помощи пары встроенных функций:

  • svds (A) — вектор, состоящий из сингулярных чисел;
  •  svd (A) — сингулярное разложение:

  •  А — действительная матрица.


Пример поиска сингулярного разложения сингулярной матрицы приведен в листинге 8.25, причем его последняя строка представляет собой проверку правильности найденного разложения. Подчеркнем, что вычисленные сингулярные числа находятся на главной диагонали средней матрицы разложения, а ее остальные элементы, по определению, равны нулю. Сравнивая матрицы из листинга 8.25, вы без труда разберетесь, каким образом следует выделять искомые матрицы сингулярного разложения из результата, поставляемого функцией svd.



Содержание  Назад  Вперед